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VABSTRACT

c-Inequalities concerning bivariate and multivariate distri-

butions in statistics are surveyed, as well as historical back-

ground. Subjects treated include inequalities arising through

positive and negative dependence; Boole, Bonferroni and Fr~ch4t

inequalities; convex symmetric set inequalities; stochastic

ordering; stochastic majorization and inequalities obtained by

majorization; Chebyshev and Kolmogorov-type inequalities; multi-

variate moment inequalities; and applications to simultaneous

inference, unbiased testing and reliability theory.
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elliptically symmetric density; Boole, Bonferroni
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1. Introduction

Inequalities have played a central and lasting role in prob-

ability theory as well as in mathematics in general. In mathema-

ics, the subject of inequalities has centuries old roots and many

prominent researchers have contributed to its growth. The classic

book by Hardy, Littlewood and Polya (1952), first published in

1934, provides a remarkable compendium of mathematical inequal-

ities. While the development of probability inequalities is

intertwined with the mathematical development, there have been

separate major influences as a result of the special needs of

probability theory. For instance one inequality common to both

mathematics and probability is the famous Cauchy-Schwarz in-

equality which in its probabilistic form states that

Cov(X,Y) < (Var X)i(Var Y)i. On the other hand, Chebyshev's im-

portant iaequality germinated in the context of probability theory,

being developed in order to approximate probabilities of complex

events.

The origins of probability inequalities for multivariate

distributions are not new (for instance, Boole's inequality and

also the Cauchy-Schwarz inequality). However, the dramatic growth

of this subject area has taken place in the last half of this

century. This growth parallels the major growth of multivariate

analysis itself during this period. Recently there have been

some attempts to impose structure on the area of multivariate

probability inequalities. Two notable efforts are the mono-

graphs of Marshall and 01kin (1979) and Tong (1980). Also see

the review paper of Eaton (1982). The multivariate inequalities
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presented here are divided roughly into three groupings, namely,

inequalities among random variables, stochastic comparisons

between random vectors, and moment inequalities.

While multivariate probability inequalities are important

in their own right, equally important is the application of these

inequalities to problems in statistics. The context in which they

are most useful is dealing with probabilities for random vectors

having complex dependencies. In many such situations, the eval-

uation of the probabilities is technically virtually impossible,

so that bounds for these probabilities become highly useful.

Three specific areas of extensive application, which are dis-

cussed in this paper, are reliability theory, simultaneous in-

ference and unbiased testing.

2. Positive and Negative Dependence

Various inequalities arise when the entries of a random vec-

tor X=(X1 .... ,Xp) are positively dependent. (See Barlow and

Proschan (1975) for a discussion.) For example, there are many

circumstances where for all xI ,... ,p,

p
Pr[X >x .. X >x ]> 1t Pr[X i >xi]. (1.1)

This is a type of positive dependence called positive upper

orthant dependence (PUOD). A variant, positive lower orthant

dependence (PLOD), is obtained by replacing all ">" by "<" in

(1.1). In the bivariate case, considered by Lehmann (1966),

PUOD and PLOD are equivalent; a discussion of the more general

f
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case is given by Tong (1980). A different positive dependence

concept which implies both PUOD and PLOD is association. The

entries of X are said to be associated if Cov(f(X)g(X))>0 for

all binary valued functions f and g which are nondecreasing in

each argument (see Barlow and Proschan (1975)). A simple checkable

condition which implies association is called TP2 in pairs.

See Block and Ting (1981) for a review of this and other positive

dependence concepts, their relations, and references.

A concept of negative dependence, negative upper orthant

dependent (NUOD), is obtained if ">" is replaced by "<" in

(1.1). For example, the multinomial distribution is NUOD.

Various other distributions which have the same structure as a
p

multinomial (i.e., essentially Xi being constant) also are NUODi=l

(see Block, Savits and Shaked (1982)). Other concepts of nega-

tive dependence are discussed by Karlin and Rinott (1980) and

Ebrahimi and Ghosh (1981).

Concepts derived from (1.1) can be used to partially order,

according to degree of positive dependence, random vectors whose

one-dimensional marginal distributions agree. The random vector

X is more PUOD than Y if Pr[X 1 >t I .... ,X p >t pI >PrY 1 >t i ... Yp >t p

for all tI, ... ,t . If ">" is replaced by "<" in the above, then

X is said to be more PLOD than Y. The bivariate version of the

more PLOD ordering was first described by Tchen (1980).

When X~N(O,zX), then (a) the density is TP2 in pairs if

and only if A- _x7 satisfies the condition Xij <0 for all i tj- -x i
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(Barlow and Proschan (1975)); (b) X is associated if and only

if EX is a nonnegative matrix (Pitt (1982)); (c) X is PUOD and

PLOD if and only if -X is a nonnegative matrix (this follows from

(b)); and (d) X is NUOD if and only if the off-diagonal elements

of EX are nonpositive (Block et al (1981)). If Y-N(O,y), where

the diagonal elements of E and Z are the same and E - E is
_ =Y =x -Y

a nonnegative matrix, then X is more PUOD (Das Gupta et al (1972,

Remark 5.1)) and also more PLOD (Slepian (1962)) than Y. The

density of 1Xl1 ,...,IX p is TP2 in pairs if and only if there

exists a diagonal matrix D with elements + 1 , such that the off-

diagonal elements of D D are all nonpositive (Karlin and Rinott

(1981), and Abdel-Hameed and Sampson (1978)). For certain struc-

tural conditions on E X Ix ..... IXpI are associated (Ahmed, Le6n

and Proschan (1981)) and also PUOD (Khatri (1967)); however,
V

Xl ..... X I~p are PLOD (Sidik (1967)) for all ZX" Under certain

conditions on EX and Ey it can be shown that IX1 f...IXp I are
v V

more PLOD (Sidik (1968)) and also more PUOD (Sidik (1975)) than

IYll ..... IYP I.
2 2 2 2

Let X~N(O,Ex), Y-N(O,.y), s ~Xk, u 2Xk and assume X, Y,
2 2

s and u are all independent. If EX is a nonnegative matrix,

then the scaled t-vector, X1 /s,...,X p/s is both PLOD and PUOD.

This result follows from Theorem 3.2.1 of Ahmed, Langberg, Le6n

and Proschan (1979), and the PLOD and PUOD result for X. If

EX- EY is a nonnegative matrix and IX and Ey have the same dia-

gonal elements, then Xl/s,...,X Is is both more PLOD and more PUOD
p

than Y1 /u ... ,Yp/u (see Das Gupta et al (1972, Theorem 5.1 and
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Remark 5.1)). Under any conditions that allow 1X1 !,...,IX pi

to be associated, [Xl l/s,..., IXp I/s will be associated (see

Abdel-Hameed and Sampson, (1978, Lemmas 4.1 and 4.2)). Sidak

(1971) showed that 1X11/s,... Ix l/s is PLOD for arbitrary
p

X The analogous PUOD result has been established for

certain special cases of .X by among others Abdel-Hameed

and Sampson (1978, Theorem 4.2) and Ahmed, Langberg, Le6n and Pros-

chan (1979, Sec. 5.6). If -Y is a positive semi-definite

matrix then lXl l/s,...,X pI/s is more PLOD than IYlI/u ....IY p/u

(this follows from Das Gupta et al (1972, Theorem 3.3)). Many

of these results also hold when s2 and u2 are arbitrary positive

random variables, or when the denominators of the t-vectors are

not all the same random variable. These scaled multivariate

t-distributions and their generalizations arise naturally in re-

gression problems, when the sample regression coefficients are

studied.

Let(Xil,... ,Xp)' , i = ,... ,n, be i.i.d. according to N(O,Z),

where Z is any covariance matrix such that [Xill .... ,ip I are

associated. Then EX,2  , X2 P, which can be considered (up
2

to scaling) to be a p-dimensional multivariate X , are associated.

(The proof is a direct p-variate extension of Theorem 4.1 of

Abdel-Hameed and Sampson (1978)). Similar results hold for multi-

variate F-distributions.

For distributions with an elliptically symmetric density,

Das Gupta et al (1972) give a number of results concerning the

random variables being more PLOD and more PUOD. Sampson (1982)

mom
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gives necessary and sufficient conditions in the bivariate ellip-

tically symmetric case for the density to be TP2. For a random

vector X having a distribution with a covariance scale parameter

Z, Sampson (1980) gives sufficient conditions for the association

of X.

3. Boole, Bonferroni and Fr~chdt

For the special case when the random vector has entries which

are indicator functions of sets, there are specialized probability

inequalities. Let IAi(Xi) =1, or 0, respectively, as Xi e Ai or

Xi Ai. The simplest such inequality is the well-known Boole's
p

inequality which states max Pr[IA (Xi )= 11 <Pr~u (IA (Xi)= 1)]
p l<i<p 1i=l i
SPrCIA (Xi) = 1]. There are a string of more generalized in-

equalities called Bonferroni inequalities (see Feller (1968)), the
pp

best known of which is Pr[u (IA (Xi ) =1)1>1-1 PrI (Xi )=0].
i=l • p i=l 1

This can be extended by noting that Pr[n (IA (Xi ) =l)]imin
i=l i l<<p

Pr[IA (Xi ) =1]. In the special case when A1  (--,xi],

i= 1,...,p, these latter two inequalities can be combined to give

the multivariate Fr~ch~t bounds which are written as

max (0, 1 Fi(xi)-(p-l))<Fxl, ... ,Xp(x 1 ... ,xp)< min Fi(xi).
i=l~ l<i<p11

This inequality provides bounds on the joint cumulitTve distri-

bution function in terms of the one-dimensional marginal cumulative

distribution.

4. Convex Symmetric Set Inequalities

There are a number of probability inequalities involving

convex symmetric sets which may be viewed in some sense as gener-

OKAl
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alizations of positive dependence and stochastic ordering. Ander-

son (1955) showed that if X has a density g(x) symmetric around

the origin and satisfying{(x:g(x) >t)}is a convex set for all

t, 0<t <-, then for any convex set C symmetric around the origin,

PrCX+syLEC] is a monotone decreasing function of s, 0<s <l, for

every constant vector y. Khatri (1967) showed for multivariate normal

vector X (X1 :X2 ) with cov(X1 ,X2 ) having rank one that

PrX 1 E C1 ,X 2 c C2 >P r [X1 C C1 ] Pr[X 2 4 C2] for any convex symmetric

sets C1 and C2. Under certain conditions on the cov(Xl,X 2 ),

Khatri (1976) obtained the reverse version of this inequality

with ">" replaced by "<", and C1 and C2 being complements of

convex symmetric sets. Pitt (1977) has shown that if X=(Xl,X2 )

where X-N(O,I) and Cl,C 2 are convex symmetric sets, then

Pr[X4 C1 n C2 ] Pr [X E Cl] Pr[X EC 2]. For certain types of convex

sets involving quadratic forms, Dykstra (1980) has obtained in-

equalities for the multivariate normal. For instance, if Z = I
-=x2 -

and Coy (X 1 ,X 2 ) arbitrary, then Pr(XleC1 ,X2AX 2 c 2 )> Pr(Xl E C1 )

Pr(X 2AX 2 <c 2 ) for all convex symmetric sets C and real numbers

2
c2 > 0 , where A is any matrix satisfying A = A.

5. Stochastic Ordering

Stochastic ordering is a way of comparing the relative sizes

of random variables (vectors). For example, if X and Y are uni-

variate random variables on the same probability space one possible

definition of the concept of X being less than or equal to Y is

to require Pr[X <Y3 -1. Because there is a problem when X and Y

r
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are not defined on the same space, the usual definition of sto-

chastic ordering is P{X >t} <P{Y >t} for all t. This is written
st

X < Y, i.e., X is stochastically less than Y. Moreover, if
sit -

X < Y, it can be shown that there exist random variables X and

Y defined on the same probability space with the same marginal

distributions as X and Y, respectively, such that Pr[X <Y] = i.
st

It also can be shown that X < Y if and only if E(O(X)) <E(O(Y))

for all nondecreasing functions 0 (see Marshall and Olkin (1979,

p. !3)).

In the multivariate case, X is stochastically less than Y,
st

denoted by X < Y, if E(O(X)) <E(c (Y)) for all nondecreasing func-

tions 0, where 0: IP )l. This condition implies, but is not

equivalent to, Y being more PUOD than X (Marshall and Olkin

(1979, p. 486)). (See the next xection for an example of multi-

variate stochastic ordering.) An existence theorem similar to
st

the one in the one dimensional case holds, that is, X<Y implies

the existence of component-wise ordered random vectors on the

same space with the same marginal distributions as X and Y,

respectively. See Arjas and Lehtonen (1978), and Marshall and

Olkin (1979) for the proofs and discussions of these results

in both the univariate and multivariate cases.

6. Stochastic Majorization and Inequalities

Obtained by Majorization

One simple way to define stochastic majorization between

random vectors X and Y is to require PrCX(Y] = 1 where< denotes
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ordinary majorization. This definition involves the joint

distribution of X and Y, and, hence, other definitions are pre-

ferable. An alternate definition is to say that X is stochas-

tically majorized by Y if E( (X)) <E( (Y)) for all Schur convex

functions . See Marshall and Olkin (1979, pp. 281-5 and 311-7)

for other possible definitions of stochastic majorization and

their interrelationships. With the use of these concepts, vari-

ous functions of random vectors corresponding to standard fami-

lies can be shown to be Schur convex and useful inequalities

can be obtained (see Marshall and Olkin (1979, Chapter 11)).

Majorization techniques can also be used to show that

E($(X)) <E( (Y)) for other families of functions 0 (see Marshall

and Olkin (1979, Chapter 12)). For example, let Y1 , ... IYpI

Y1, .. Yp be 2p independent exponential random variables with

means X, , -1 ,respectively. Proschan

and Sethuraman (1976) show that if X< , then E(O(Y 1 , .... YD))
y I st

E($(YI,... Yp)) for all nondecreasing , i.e., (Y1 ,... lyp<

(Y...,Y). Thus, if Y' =(Y ."' Y ') comes from a heterogeneous

random sample with means ( i i =1,...,p, and Y = (Y,... ,Y)

-I
comes from a homogeneous random sample with common mean Xp st
where X X C )/p, then Y < Y' , since necessarily

i=l1

... "' '). This implies that all of the order

statistics of the homogeneous sample are stochastically smaller

than the corresponding order statistics of the heterogeneous

sample.

- - S. .
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7. Chebyshev and Kolmogorov-Type Inequalities

A standard univariate version of the Chebyshev inequality

is Pr[IX-PI < aa] >1 -a- 2 where X has mean p and finite var-

iance a2. If X1 ,...,X p are independent with means Ui and finite
2P P2

variance a i =1 ...p, then Pr p (i -ai 2 )
i=1  - -i=l

If the X. are dependent, various authors have obtained more
1

general inequalities of which the previous inequality is a spe-

cial case. One of the first of these was obtained by Berge (1937)

in the bivariate case. Let X and X2 have means I and u2,

variances a1 and a2 and correlation P. Then Pr[IXl-j I a' l,

IX2 -1 2 i a 02] >- El +(l- p) a. Various multivariate inequal-

ities including the previous one can be obtained from the follow-

ing general result. Let X= (X1 ,. X p) have mean vector v and

covariance matrix Z = (pijia ). For ai >0 define the matrix

T=(T ij), where T ij =P ij./aia. Then Pr[ {IX i-pil<aiTi}]>l- a 2
131 31~i=l i=l

For other examples, see Tong (1980, pp. 153-154) or Karlin

and Studden (1966, pp. 517-519). Both of these references

also give bounds for one-sided probabilities; for example, lower
p

bounds can be obtained on probabilities of the form PrEn {Xi<Wi +aci}],
i=1

where X=(X1 .... Xp) has mean vector P and variances u , i= 1. .. ,p
__ 1

and for certain a > 0. For background and historical references

pertaining to the Chebyshev inequality, see Karlin and Studden

(1966, pp. 467-468). One of the earliest books to contain the

material on multivariate Chebyshev inequalities was Godwin (1964).

A Kolmogorov-type inequality is similar to the above, except

that the maximum of partial sums is employed. For example,
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if X 1 ,... ,Xn are independent and have mean 0 and Sn=X 1+... +X

with a(S n) = /Var(Sn ) I then Pr[max IS.I ((Sn))- <a] >1-a -2

l<j<n -

A multivariate version of the Koliogorov inequality has been

obtained by Sen (1971). For multivariate applications of the

univariate (independent) result and one-sided analogs, see Tong

(1980, Section 7.3).

8. Multivariate Moment Inequalities

For the moments and expectations of other functions of

multivariate distributions, there are a number of inequalities.

The most well-known states that Z is the population covariance

matrix of any random vector if and only if E is nonnegative de-

finite. Moreover, if E is positive definite and the sample

size large enough, the corresponding sample covariance matrix

is positive definite with probability one (see Eaton and Perlman

(1973)). For suitable bivariate distributions, there exists

a canonical expansion (see Lancaster (1969)) and a sequence

(pi } of canonical correlations. This sequence {pi. can be shown

to satisfy certain inequalities, e.g., Griffiths (1970) or

Thomas and Tyan (1975).

Chebyshev has given the following covariance inequality

for similarly ordered univariate functions c 1 ,$ 2 of a random

vector X (see Hardy, Littlewood and Polya, (1952, Sec. 2.17)

or Tong, (1980, Lemma 2.2.1)). If @1,'2 satisfy the condition

that ( 1()- l(x))(0 2 (E) -0 2 (x)) >0 for all suitable x,x then

Cov( 1 (X), 02 (X)) >0. A number of moment inequalities can be

- - F,.
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obtained from the result that for any nonnegative random vector

X, whose distribution is invariant under permutations, it follows

that EITX i is a Schur-convex function of (XV,...,x) (see Tong

(1980, Lemma 6.2.4)). For example, if X-N(u e,a 2(1-p)I+pee ),
EAi P X i P 

where e=(l,....1)', then EX. > E IT X. > E(I X) where

X>O, i=l,...,p and 3=p -1E X"

There are several results relating the more PLOD ordering

to certain moment inequalities. If (XI,X2 ) is more PLOD than

(YI,Y 2 ), then any of the following measures of association:

Pearson's correlation, Kendall's T, Spearman's p or Blomquist's

q computed based on (X1 ,X2 ) are greater than or equal to the

corresponding measure based on (Y1 ,Y2 ) (see Tchen (1980)).

Dykstra and Hewett (1978) have examined the positive de-

pendence properties of the characteristic roots of the sample

covariance matrix. If S is the sample covariance matrix based

upon a random sample from N(u,I), they show that the ordered

characteristic roots are associated random variables.

9. Applications

Multivariate probability inequalities are very important

for simultaneous confidence bounds, where lower bounds are sought
P

on probabilities of events such as n (1ei0 - oil <ci}, where the
^ ̂  i=l

estimators 01, ... ,p have some multivariate distribution pos-
pJ

sibly depending on nuisance parameters. The basic concept is

to bound this probability by probabilities of marginal events,

where no parameters are involved. For instance, if X-N(p,Z),
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the fact that Ix1 - 1I,..... - pj are PLOD provides conserva-
1 ~ P

tive simultaneous confidence intervals for j 1 ... ,1p, when Xi ,

i=1,...,p are known. General discussions of applications of

probability inequalities to simultaneous inference can be found

in Miller (1981), Krishnaiah (1979), and Tong (1980). Also

found in the latter are applications of these techniques for

establishing unbiasedness for certain multivariate tests of

hypothesis.

Many of the dependence inequalities are useful in applica-

tions ot reliability theory. Consider a nonrepairable binary

system consisting of p binary components with lifetimes T1 ...., Tp

and having system lifetime T. The system lifetime T is generally

a function of the component lifetimes such as T = max min Ti
l<r<k iePr

where the Pr are min path sets (see Barlow and Proscian (1975,
Chapters 1 and 2, and p. 150)). In general the Ti are not inde-

pendent and it is desired to approximate Pr[TeB] by the Pr[TiEB ],

i =1,...,p, where B and the Bi's are usually intervals. To do

this, various univariate and multivariate inequalities are used.

As a simple example, if the Ti are PUOD, then Pr[T >t]
k

Pr[u n (Ti > t)] > max PrCn (Ti > t)] > max 11 PrET i > t],
r=l iEPr 1 -l<r<k ieP r  l<r<k iePr

where the first inequality follows from Boole's inequality and

the second follows from PUOD. If the distributions of the Ti

are not known but the Ti lie in a class of wearout distributions,

e.g., Ti has increasing failure rate, lower bounds on Pr[T>t]

can be found in terms of the bounds on Pr[Ti > t]. For example,

Theorem 6.7 of Barlow and Proschan (1975, Chapter 4) can be em-
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ployed in such an application. Many other applications of this

type are contained in Barlow and Proschan (1975, Section 4.6).

Generalizations of this type of result to multistate systems

have been given by Block and Savits (1982).

gi
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